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Finite amplitude surface waves in a liquid layer 

By ALI HASAN NAYFEH 
Aerotherm Corporation, Mountain View, California 

(Received 25 July 1969) 

An analysis is presented for the interaction of capillary and gravity waves in a 
liquid layer of finite depth. The method of multiple scales is used to obtain a 
third-order expansion uniformly valid for all times. Although this expansion is 
valid for a wide range of wave-numbers, it breaks down at two critical wave- 
numbers if the liquid depth is larger than 2j3/kc, kc = (pg/T)J, where g is the gravi- 
tational acceleration, and p and T are the liquid density and surface tension, 
respectively. For a deep liquid, the singularities are at k J 4 2  and kc/J3 respectively, 
as found by Wilton (1915), and Pierson & Fife (1961). 

A second-order expansion valid for wave-numbers near the first critical value 
(corresponding to a wavelength of 2.44cm in deep water) is obtained. This 
expansion shows that two different wave profiles could exist at  or near the first 
critical wave-number. One of these profiles is gravity-like while the other is 
capillary-like. 

1. Introduction 
The problem under consideration is finite-amplitude waves in a finite-depth 

liquid adjacent to a gas with negligible density. The liquid is assumed to be in- 
viscid and unlimited in extent. Only periodic travelling waves are considered in 
the absence of secondary disturbances of any kind. 

Finite-amplitude gravity waves were adequately described many years ago 
by Stokes (1847), Michell (1893), Wilton (1914) and Levi-Civita (1925). Crapper 
(1957) presented an exact solution to the non-linear equations of motion when 
surface tension istheonlyrestoring force. He foundthat the phase speed decreases 
rather than increases with increasing amplitude as in the case of gravity waves. 
Moreover, he predicted that capillary waves have profiles that peak or dimple 
downward, contrary to the case of gravity waves. Schooley (1958) confirmed 
Crapper’s theory by taking high-speed motion pictures of short-fetch, wind- 
generated, water waves. He obtained pictures of short capillary waves riding just 
in front of the start of the crests of gravity waves having velocities equal to those 
of the capillary waves. 

Wilton (1915) and Sekerzh-Zenkovich (1956) analyzed the interaction be- 
tween gravity and capillary waves in a deep liquid using perturbation techniques. 
Wilton found difficulties in his expansion (higher order terms are unbounded) 
for the denumerable set of critical wave-numbers, = (pg/nT)&, where n is an 
integer greater than 1, g is the gravitational acceleration acting toward the liquid, 
and p and T are the liquid’s density and surface tension respectively. He modified 
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his expansion and obtained a bounded solution at  the first critical wave-number 
(k; corresponding to a wavelength of 2.44cm in deep water). Wilton's latter 
solution shows that two different wave profiles with different phase speeds could 
exist at  the first critical value. A t  this critical value he predicted conditions of 
single- and double-dimpled wave profiles. Schooley (1960) observed double- 
dimpled wave profiles by means of enlarged pictures of short-fetch, wind-gener- 
ated waves. Moreover, he used pictures to show that triple, quadruple, etc., 
dimpled wave profiles can also be observed under proper conditions. 

Pierson & Fife (1 961) obtained a third-order expansion for the interaction of 
capillary and gravity waves in a deep liquid using the classical perturbation 
technique formalized by Stoker (1957) for water waves. This expansion is un- 
bounded at the first two critical values. They modified their solution to obtain a 
first-order expansion (the second-order solution has an undetermined constant) 
near the first critical value, using the PLK method (Van Dyke 1964). Nayfeh 
(1969) obtained a second-order expansion at and near the second critical wave- 
number (corresponding to a wavelength of 2.99 cm in deep water). He predicts 
that three different wave profiles could exist in this case. One of these waves is 
gravity-like, having three dimples, while the other two are capillary-like, having 
five dimples. 

The purpose of this paper is to obtain a second-order expansion valid at and 
near the first critical wave-number, using the method of multiple scales (Nayfeh 
1965, 1968). The present analysis extends the results of Wilton (1915) to the case 
of a finite depth liquid, and for wave-numbers near the first critical wave-number. 
The present analysis also extends the results of Pierson & Fife (1961) to the case 
of a finite liquid, and to second order. 

2. Mathematical formulation 
The liquid is assumed to be inviscid, and to have a finite depth, but to be other- 

wise unlimited. One face of the liquid is assumed to be adjacent to a solid wall, 
while the second face is assumed to be adjacent to a gas whose density is negligible 
compared to that of the liquid. The motion is assumed to be two-dimensional and 
to start from rest, so that it can be represented by a potential. 

Distances and time are made dimensionless using the wave-number k' and the 
time (gk')-t ,  where g is the gravitational acceleration assumed to be acting to- 
ward the liquid. A Cartesian co-ordinate system is introduced, such that the x- 
axis lies in the plane of the undisturbed surface, and the y-axis normal to this 
surface and directed away from the liquid. In  this co-ordinate system, the dimen- 
sionless potential function #(x, y, t ) ,  representing the liquid oscillations, satisfies 

V2# = 0,  

for -a < x < m and -h  6 y < 7, where h is the depth of the layer and ~ ( x ,  t )  
is the elevation of the wave above the undisturbed surface. At the solid interface, 
the normal velocity vanishes, i.e. 

&(x, - h, t )  = 0. 
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At the liquid-gas interface, the normal component of the liquid velocity must be 
equal to the normal velocity of the interface itself, i.e. 

Tt-rx$x+$y = 0 at Y = 7. (2 .3)  

(2 .4)  7 - 4t + a($: + $;) - k 2 T x x ( l  + 43-+ = 0 

at y = 4, where k = k'/kc, k, = (pg/T)* .  12-51 

Moreover, the pressure is constant at the interface, and Bernoulli's equation 
gives 

Here, p and T are the liquid density and surface tension, respectively. The initial 

conditions are m 

The functions f,(x) will be chosen to yield periodic travelling waves. 
An approximate solution to (2.1)-(2.6) is sought for small but finite E ,  using 

perturbation techniques. A straightforward perturbation solution would fail for 
large times due to the appearance of secular terms. To determine a second-order 
approximate solution valid for large times, the method of multiple scales is 
employed by introducing the two new variables, Tl = st and T2 = e2t, in addition 
to the original variable To = t. Since E is small, Tl and T, are slow compared to To. 
The functions ~ ( x ,  t ;  E )  and $(x, y, t ;  E )  are assumed to possess the following uni- 
formly valid expansions for all times: 

3 

n= 1 

3 

n=l 

r(2, Y, t ;  .) = c En%&, To, Tl, T2)+ 0 ( E 4 ) ,  

4(%, Y, t ;  4 = x E V n ( X ,  To, Tl, T2) + 0 ( E 4 ) .  

(2 .7)  

(2.8) 

In  order that (2 .7 )  and (2 .8 )  be uniformly valid, qn/ro must be bounded for all 
T,, Tl and T,. The time derivative is transformed according to 

a a  a a 
- = - + f - + @ -  

at aTo aTl aT,' (2 .9 )  



674 A .  H .  Nayfeh 

order E ~ :  V2$, = 0) (2.12a) 

313. To + $3,Y == $1, Xq2, X + ($1, XU + $2, X)  v l , Z  - $2,?JYTl 

1 -~ 
z$1,Yan,r21-$l,yyr2-rl,Ts-r2,T1 at Y = 07 (2-12b) 

r3-$3,To-k2r3,xx = -$I,x$2,~-$1,1~$2,y 

2 - ($1,zy$1,x+ $l,yV$l,V)rl- #k2r1,zxr1,z 

+$2,Tl+$l ,yTlTl  at Y = '7 (2.12 c) 

2 
$- $2, ?J Tor1 + $$l,yy Tor1 f $ 1 , ~  I T 0 7 2  + $1 Tz 

$3,V(x) -h, To, Tl, T2) = 0, ( 2 . 1 2 4  

7 3 ( x )  O) = f 3 ( x ) ,  73,To = -Tl,T2-T2,T1* (2.12e) 

In  the next section, a third-order solution for these equations is given for the 
special case fl(x) = cos x. This solution contains two singularities which depend 
on the depth of the liquid layer. For deep liquid layers, the two singularities 
occur at k2 = & and k2 = Q as found by Wilton (1915), and higher order solutions 
have singularities at  k2 = lln where n is an integer. A third-order expansion 
valid near the first singularity is obtained in § 4. 

3. Solutionforfi(x) = cos x 
In  this case, secular terms do not arise in the second-order solution, and hence 

the solution can be shown to be independent of T1. Therefore, the derivatives 
with respect to T'' are dropped in this section. 

The periodic travelling wave solution of the first-order equations is 

= COSO) (3 . la)  

( 3 . l b )  

( 3 . 1 ~ )  

(3 . ld)  

Equations (3.1) determine uniquely the higher-order terms except for the addi- 
tion of solutions of the corresponding homogeneous equations. A unique solution 
is determined by requiring the absence of the fundamental (cos 0) from rn  for 
all n 2. Substitution of (3.1) into the right-hand sides of (2.11b) and (2.11c), 
and solution of the resulting second-order equations give 

y2 = a22cos 28, (3.2a) 

s in28+9 (coth2h- 1) To, 
cosh Z(y + h) 

4 $2 = (TOe22 sinh2h 

tanh 2h - 2 coth h - 
2 mnh2 h tanh 

' 

(3.2b) 

(3%) 

(3.2d) 

(3.2e) 

eZ2 = a,,-+cothh, 

,u; = 2(4k2+ 1) tanh 2h. 
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Equations (3.1) and (3.2) determine theright-handsides of  (2.12b) and (2.12e), 
and they become 

73,~~+$3,y = - (A31~o-PS)s in8-A33~os~38,  ( 3 . 3 4  

~3-$3,T~-k~73,,~ = (E31~;+~~o&cothh) C O S ~ + E ~ ~ C T ~ C O S ~ ~ ,  (3.3b) 

A,, = $(coth h + 2 coth 2h) aZ2 +$ - Q coth h coth 2h, 

A,, = & L ~ ~  coth h + 8 + 3e2, coth 2h, 

(3.3c) 

( 3 . 3 4  

(3.3e) 
3 k2  

3 k2 

E31= a 2 + $az2 - + coth h + ( 1  - coth h coth 2h) e22, 

E3, = - - - + +a2, + 3 coth h + ( 3  - coth h coth 2h) e22. 

The particular solution of (2.12a), ( 2 . 1 2 4 ,  and (3.3) contains secular terms of the 
form To sin 8 and To cos 8 unless 

0 

(3 .3 f )  8 u; 

U 
/% = 2 (A31+E31)- (3.4) 

With this condition, the third-order solution becomes 

r3 = a33 cos 38, ( 3 . 5 4  

cosh 3(y + h)  
+‘0(a33-4A33) sinh 3h sin38, (3.5b) 

3 ~ 3 E ~ ~  tanh 3h - A33) 
p; - 9CT; a33 = 1 (3.5c) 

p t  = n(n2k2 + 1) tanh nh. (3 .54  

The free surface to third order is thus given by ( 3 . 6 ~ ~ ) ~  and the dimensional 
phase speed to second order is given by (3.6b). Also, there would be an appro- 
priate equation for #. 

( 3 . 6 ~ )  7 = e cos 8 + e2uZ2 cos 28 cos 38, 

(cothh+4coth2h-3tanhh)a2, 

For infinite liquid layers (i.e. h -+ a), (3.6) become 

3e2 2 k 4 f ’ k 2 f 2  cos38, ( 3 . 7 ~ )  
€2 l + k 2  

‘OS “‘3 ( 1  - 2kZ) (1 - 3kz) 2 1-2k2 
7 = ~ c o s ~ + - -  

(3.7b) 

This solution is in full agreement with those of Wilton (1915), Pierson & Fife 
(1961) (except for a typographical error in the third-order term), and Nayfeh 
(1969). As found by Wilton, ( 3 . 7 ~ )  breaks down as k2 + + or +, and the phase 

43-2 
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speed breaks down as Ic2 -+ 4. Higher-order terms break down as k2 -+ l/n, where 
n is an integer. Equations (3.7) can be shown to reduce to the gravity waves 
(k -+ 0) of Stokes to third order (see Lamb 1932; Kinsman 1965), and to the capil- 
lary waves ( k  --f co) Crapper (1957) to third order. 

Although (3.6) are valid for a wide range of wave-numbers, they break down 

when pi-n2a; = 0, n = 2 and 3, (3.8a) 

or n(k2 + 1) tanh kz - (n2k2 + 1) tanhnkz = 0, (3.8b) 

where 5 = k$' with h' the dimensional depth of the layer. It can be shown, by 
carrying out the expansion to higher orders, that the j t h  term has singularities 

FIGURE 1. Variation of the first two critical wave-numbers with liquid depth. 

at thesolutionsof (3.8b)forn = 2, 3, ...,j. If z +  00, the solutions of (3.8b) are 
k2 = l/n. For small kz, (3.8b) reduces to 

Thus, the expansion to any order is regular for z < 43. The solution k(z;n)  of 
(3.8b) is shown in figure 1 for n = 2 and 3. A second-order expansion valid for 
wave-numbers near the f i s t  singularity (which corresponds to a wavelength of 
2.44 em in deep water) is given in the next section. 

4. Solution near first singularity 

that 

with 01 = O(1). Following Wilton (1915), we modify the initial condition 

In order to obtain a valid solution near k,,, where 44(k0) = &(kO), it  is assumed 

k = k 0 + m ,  (4.1) 

f1(X) = cosx 

to  contain the first and second harmonics, i.e. 

fi(x) = COB x + bl cos 2x, 
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where b, is a constant of O( 1) which will be determined from the second-order 
solution. Equation (4.1) leaves (2.10)-(2.12) unchanged, except that  (2.11~) 
and (2.12 c) are modified to include the additive terms, 2k0a7,,xx and 

2koa72,xx + a271,xw 
respectively. 

initial condition (4.2), is 
The periodic solution to the first-order equations (2.10), subject to the modified 

(4 .3~)  7, = cos 8 + b, cos 28, 

cosh 2 (y + h) 
sinh 2h 

sin 28, $1 = cash sinhh (y + h, sin 8 + gobl  (4.3b) 

6 = x+ g,T,+P,(q, T2), Pl(0,O) = 0. (4.3c) 

The dependence of P1 on T, as well as the constant b, will be determined from the 
second-order solution. 

Substitution for 7, and $, from (4.3) into (2.11 b) and the modified (2.11 c) gives 

+ $z,y = - a, (cothh + 2 coth 2h) sin 8 1 
- [go coth h - 2b,P,,Tl] sin 28 - $gob, (coth h + 2 coth 2h) 

sin38- 4vOb2,coth2hsin48, (4.46) 

~z-$z,Ta-kiq2,xz = - q 2 0 +  [~0/91,,, cothh- 2 k 0 a + ~ b , g ~ ( 2 ~ o t h h c o t h 2 h -  3)] 

x cos 8 + [2gob,P,,q coth 2h- 8k,ab, - $u$ (coth2 h- 3)] cos 28 

-&~ib,(2cothhcoth2h- 7)cos38-b2,cr~(coth22h--3)cos48, (4.4b) 

420 = tgi(coth2h- l )+~~ ;b2 , (~o th~Zh-  1). (4.4c) 

The particular solution of (2.116), (2.114, and (4.4) contains secular terms of 
the form To(sin 8, cos 8, sin 20, and cos 267, unless the following conditions are 
satisfied : 

k a !  

VO 

2k,ab, 

ab 

v1 = Ltanhh+B[4coth2h+cothh- 3tanhh]a0b,, (4.5b) 

tanh2h+% [4cothh+ (coth2h-3)tanh2h]. (4 .5~)  
16 bla; = - 

With these conditions, the solution of the second-order equations becomes 

sin 48, (4.6b) 
cosh 4(y + h) 

sinh 4h 
cash 3(y + h, sin 38 + coqza 

+ go q23 sinh 3h 
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3 4  3(coth h + 2 coth 2h) + ( 2  coth h coth 273 - 7) tanh 3h 

4 coth 2h + (coth2 2h - 3) tanh 4h 

where 1123 = - - 7 (4.64 2 pi - 9CT; 

9 (4.6d) 

(4.V) 

(4-6g) 

1124 = - 40.: bq 
pi- 1 6 ~ ~ :  

q 2 1 =  - +bl (coth h + 2 coth 2h) + cl/g0, (4.6e) 

q 2 2  = - & Goth h + ~ , C T ~ / C T ~ ,  

q23 = [ ~ 2 3  - &b1 (Goth h + 2 coth %)I7 
~ 2 4  = ( ~ 2 4  - bi  coth 2h). (4.6h) 

The function P,(T,) and the parameter b2 will be determined from the third-order 
equations. 

Elimination of g1 from (4.5) gives 

kac 
g 0  

b2,-271+bl-y,= 0, ( 4 . 7 ~ )  

where 
2(2tanh2h--tanhh) 

y1 = 4coth 2h+ coth h-  3 tanh h’ 

yz  = 4 coth h tanh 2h. 
The solution of ( 4 . 7 ~ )  is 

(4.76) 

(4.7c) 

(4.8) 

The above first- and second-order solutions determine the right-hand sides of 
(2.12b) and the modified (2.12~). They become 

r3, To + #3,y = [/9; - (9 coth h + coth 2h) r0 b,] sin 8 
6 

m = l  
+2(bl~~+b2vl)sin28-cr, 2 P,,sinmB, (4.9a) 

~ ~ - $ 3 , ~ o - k ; ~ 3 , z z  = [ P ; 1 ( ~ o c o t h h + ( ~ - ~ o t h h ~ o t h 2 1 L ) ~ ~ b ~ ] ~ 0 ~ 8  
6 

m=O 
+ 2 [ ~ o b l ~ ~ c o t h 2 h + ( ~ o ~ l c o t h 2 h - 4 k O a c )  b2]cos26+r: 2 Q3,cosm6, 

(4.9b) 

with the 2”s and Q’s given in the appendix. Elimination of the secuIar terms from 
the third-order equations necessitates the satisfaction of the following two con- 
ditions : 

(4.10a) 

(4.1 0 b)  

‘P6 f 7 3  b2 = 

+ Y4b2 = 

y3  = uo (3  tanh h - coth h - 4 coth 2h)/2, where 

(4.1 1 a) 

(4.11b) 
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With these conditions, the solution for 7, is 

6 

where 

7, = ~ , C O S  2e+ 2 p 3 m ~ o s m @ ,  
m= 3 

679 

(4.12a) 

(4.12b) 

where b, is a constant which can be determined by carrying out the expansion 
to  fourth order. This is not done in this paper, and b, remains undetermined. 

The free surface to third order is thus given by 

7 = cos e + (Ebl + ~ b ,  + €3b,) cos 2e 
6 

m = 3  
+ ~ 2 ( ~ 2 3  cos 38 +pU cos 4e) + €3 c pZnl COB me, (4.13) 

and the wave speed is given by 

where 

and 

c = (:)$ ( k o + i ) ' [ l  +ec1+s2c,], 

p;; 3a2 c --+-- 
cro s k i '  2 -  

( 4 . 1 4 ~ )  

(4.14b) 

( 4 . 1 4 ~ )  

Limiting cases 
For a deep liquid (i.e. h + a), 

7 = e cos 8 + e(bl + ebZ + e2b,) cos 20 - 3e2[b1 - e(& - +eb: - b, + y k o a b l ) ]  cos 38 

- e2[b2, - e ( y b l  - 3b: - 2b1 b, + y k o a b : ) ]  cos 40 + e3b: cos 58 + ge3b: cos 60, 
(4.15a) 

where 

$-$b2,+@&,ab1-+a2- (k0a/6b,)  
b2 = - 

1 - (2k0a/3b1) 

(4.15b) 

( 4 . 1 5 ~ )  

The phase velocity to second order is 

c = G O [ l  + EC1 + €2C,] ,  (4.1 6 a )  

where c1 = T +(%a,+ 1 4 ) 4  (4.16 b)  

c2 = i b ,  + & - y b :  + $kOab, + %az. (4.16 c )  

The second-order part of the above solution can be shown to agree with that of 
Pierson & Fife (1961), except for a typographical error in the second-order, by 
expressing the latter in dimensionless quantities. 

In the case of deep-water waves at a wavelength of 2.44cm (i.e. a = 0) ,  the 
above solution becomes 
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The phase velocity becomes 
c = C o ( l T $ E - $ @ 2 ) .  (4.18) 

This solution can be shown to agree with the parametric solution of Wilton 
(1915), after the latter is corrected for typographical errors. 

5. Results and conclusions 
The results of $ 3  show that the solution of the linearized equations is not arbi- 

trary at or near a denumerable set of wave numbers if the liquid depth is larger 
than ,/3/Tc,. Assuming that the first-order solution contains one harmonic only 
leads to an expansion which is singular at the wave-numbers kc/&, where n is 
an integer. 

-1.0 olIz3z3 
FIGURE 2. The two different wave profiles for a wavelength of 3.73 em and an amplitude 
of 0.078 cm in a water laycr of depth 0.55 cm. The upper curve is a capillary profile, while 
the lower curve is a gravity profile. One cycle is shown. 

To remove the singularity at  the first critical value (corresponding to a wave- 
length of 2.44 em in deep water), the first-order solution is assumed to  contain the 
first and second harmonics. The coefficient of the second harmonic is determined 
from the analysis. The resultant expansion is bounded, and shows that two dif- 
ferent wave profiles could exist at  or near this critical value, as found by Wilton 
(1915) for the case of deep water at  the first-critical value. One of the profiles is 
gravity-like having a phase speed that increases while the other is capillary- 
like having a phase speed that decreases as the amplitude increases. 

Figure 2 shows the wave profiles predicted from the present analysis for an 
amplitude of 0.078 cm at a wavelength of 3-73 cm in a water layer of depth 
0.55 cm. The upper curve is capillary-like having three dimples while the lower 
curve is gravity-like having four dimples. 

The upper two curves in figure 3 are the two wave profiles predicted from the 
present analysis at  a wavelength of 244cm in deep water. The upper curve is 
capillary -like, having one large and three small dimples, while the other is gravity- 
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- 1.0 

-1.0 ' J 

1 .o 

FIGURE 3. Wave profiles in deep water for a wavelength of 2.44 cm and a steepness ratio 
of 0.4. One cycle is shown. The upper curves are calculated from the present analysis while 
the lower curve is one of three curves calculated by perturbation from a wavelength of 
2.99 cm (Nayfeh 1969). 

0 

- 1.0 

- 2.0 

1 .o 

-1.0 

1.0 1 I 

- 1.0 O I  

FIGURE 4. Wave profiles in deep water for a wavelength of 2.99 cm and a steepness ratio 
of 0.4. One cycle is shown. The upper curves are calculated from present analysis by 
perturbation from a wavelength of 2.44 em while the lower curve is one of three profiles 
calculated by Nayfeh (1969). 
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like, having two large and two small dimples. If one attempts to calculate the 
wave profiles a t  a wavelength of 2.44 ern by perturbation from those a t  a 
wavelength of 2.99cm (Nayfeh 1969), he finds that three, rather than two, 
wave profiles are possible. Of these three profiles, the lower curve in figure 3 
is the most qualitatively similar to the profiles predicted from the present 
analysis. This lower profile is capillary-like, having two large and three small 
dimples. Figure 3 shows that the analysis of Nayfeh (1969) is not valid at  a 
wavelength of 2.44 em. 

0 

-1.0 -' 

- 2.0 

1.0 1 I 

-1.0 ' I 

FIGURE 5. Wave profles in deep water for a wavelength of 2.69 em. One cycle is shown. The 
upper curves are calculated by perturbation from a wavelength of 2.44 cm while the lower 
curve is one of three curves calculated by perturbation from a wavelength of 2.99 cm 
(Nayfeh 1969). 

To determine the range of validity of the present analysis, the two profiles 
predicted from this analysis at a wavelength of 2.99 ern in deep water are com- 
pared in figure 4 with the most qualitatively similar profile of the three profiles 
predicted by Nayfeh (1969) a t  a wavelength of 2-99 em. This comparison shows 
that the present analysis is not valid a t  a wavelength of 2-99 em. 

Figure 5 compares three profiles calculated at a wavelength of 2-69cm in 
deep water. The upper two profiles are obtained by perturbation from those a t  a 
wavelength of 2-44cm. The third profile in figure 3 is the most qualitatively 
similar of the three profiles calculated by perturbation from those a t  a wave- 
length of 2.99 em. The difference in these profiles shows that both the present 
analysis and that of Nayfeh (1969) are valid only in the immediate neighbour- 
hoods of the first and second critical wave-numbers, respectively. 
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